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Abstract

The nonlinear, large amplitude free vibration of composite helicopter blades under

large static deflection is investigated analytically. A new model capable of handling

large amplitudes as well as large deflections was developed, based on the work in a

previous report by Minguet. The model can deal with large displacements and rota-

tions by use of Euler angles and can account for structural couplings such as bending-

twist and extension-twist. The reduction of this large deflection model to a commonly

used moderate deflection model is also shown. A Newton-Raphson type iterative so-

lution technique based on numerical integration of the basic large deflection equations

is seen effective for the present analysis. Two different lay-ups to/903o, [45/01., of

graphite/epoxy flat beams have been selected to demonstrate the large am-'litude

analysis. The behavior of the first and second bending, the first fore-and aft, and the

first torsional modes is presented as tip static deflection and tip amplitudes increase.

It is found that both large static deflection and large amplitudes can affect the fore-

and-aft and torsion modes significantly, but bending modes are not influenced much

by the geometrical nonlinearities.
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Chapter 1

Introduction

The behavior of nonlinear, large amplitude free vibration of composite helicopter rotor

blades under large static deflections is investigated. A previous report by Minguet,

Ref. 1 indicates that under large static deflections, natural frequencies and mode

shapes of the blade, particularly those of the fore-and-aft and torsion modes show

interesting trends that are not apparent from the characteristics of undeformed

cantilever beams. The influence of the large static deflections on the modes was

found by linearizing the governing equations of motion around a given static position

to yield the small amplitude vibrations of the beam around that large static position.

In the present analysis, the amplitudes of motion are also allowed to be large, and

emphasis is given on how the vibrational behavior of the blades is affected by not

only the static deflection but also the amplitude level at the tip. This type of free

vibration analysis should give insight into more general aeroelastic problems where

large amplitude motion is accompanied by nonlinear exciting forces such as nonlinear

periodic forces due to gravity or aerodynamic loads due to dynamic stall. A simple

such analysis, dealing only with geometrical nonlinearities of the rigid blade, was given

by Chopra and Dugundji in Ref. 2. More recently Dunn and Dugundji have given

another such analysis, this time dealing only with aerodynamic stall. A fully nonlinear

aeroelastic analysis involving both structural and aerodynamic nonlinearities would be

of interest. Flexible helicopter blades are good examples in which these nonlinearities
pI



understanding of such complex phenomenon.

There exist two types of nonlinear helicopter blade equations that can be readily

available for the purpose of present analysis; the equations that are based on various

geometrical ordering schemes, and the ones that are not based on ordering schemes.

The former group of equations approximate large displacements and rotations mostly

up to second order(e.g. Ref. 4, 5) while the latter group preserve the complete

nonlinearities in them (e.g. Ref. 1). Since strong couplings between various static and

dynamic parts of the equations are expected in the nonlinear large amplitude

vibrations, the set of complete nonlinear equations of the latter group is preferred.

The nonlinear equations derived by Minguet in Ref. 1 are used here for their simplicity

and immediate availability for analysis of composite blades. However, to illustrate

correspondency between these two different types of equations, an attempt is made to

reduce the nonlinear equations by Minguet t .ie second order equations for moderate

deflections that are given by Hodges and Doweil in Ref. 4, and Boyd in Ref. 5.

A new technique based on harmonic balance and iterative Newton-Raphson

algorithm is introduced to solve for the modes and their frequencies as functions of

amplitudes of interest under moderate to large static deflections. Results of numerical

analysis are given for two lay-ups [0/90]3,, and [45/01, of graphite/epoxy composite

beams under various static deflections.

All assumptions made earlier in Ref. 1 are retained throughout the analysis. They

are, the blade itself is long enough to be treated as a one-dimensional model, shear

deformation can be neglected, and warping of the cross section of the blade can

be neglected. Also, material nonlinearity is not considered here. As indicated by

Friedmann in Ref. 6, this model has some limitations since it does not include shear

deformation and warping of the blades which may be present to a small extent in

realistic helicopter blades. However, it is only a matter of refining to include such

structural effects, and for the purposes of current analysis the model is found to

be adequate to show the basic characteristics of large amplitude free vibration of

2



composite helicopter blades.
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Chapter 2

Analytic Modeling

2.1 Basic Equations

There are twelve first-order, nonlinear differential equations that describe the statics

and dynamics of composite blades completely. For thorough derivation of the equa-

tions see Ref. 1. All the equations are derived based on the following transformation

matrix that transforms the global coordinate z, V, z into the local one , 7, (see figure

1), i. e.

cos 0 cost cos 3 sin t' sin 3

- cos 9 sinik cos 0 cos V sin 0 cosj3
[T] = -sine sinL3 cos b -sine sinB3 sinb (2.1)

sin 0 sin, - sin O cos b cos 9 cos/3
- cos a sin 3 cos 1, -cos 0 sin 3 sin ]

Here 0,9 are the local Euler angles. The transformation matrix is orthogonal and

related to the rotation (or curvature) matrix as follows.

4



[T]-'= [TIT

a[TJ =[K](T] (2.2)
as

with

[1 - 0 K] (2.3)
-C 0

where

06 a
%f= -- + sin -3 a- (twist rate)

K Cos 0 T sin 0 cos/3- (bending about 17 axis)O7s 40.a
(2.4)

x = sin0 + cos9 cosL (bending about axs)

Inverting the above differential equation yields
0

= xc - sin 0 tan 0 , -cos 8 tan5 0x(

0 = - cos 0 .,7 + sin 0 rc (2.5)

00 sin 0 cos 9

as cos 0 Cos 

The global displacements z, y, z are related to Euler angles via

- ( + E) cos 0 cos 0
Os

__ - (1 +e) cosB sin -, (2.6)

Oz
z- = (1 + c) sin3

where e is the axial strain along the reference line. In addition to the above six

compatibility equations, one has to consider equilibrium of forces and moments of the

5



beam. The equilibrium equations can be written either in global or local coordinates.

Here they are written in local coordinate in order to take into account the large

deformation of the beam in space. The first three differential equations that describe

the equilibrium of the local force resultants F1, F2, F3 are

a j_ _F 2 + , F3 +TIIP.+T 12py+T13P+p1 = 0

OF2
--'_ + r± C F, - xf F3 + T2, p. + T22 Py + T23 pz + p2 = 0 (2.7)
OF3
OF3  ,7 F 1 + = F2 + T31 P .+ T32 P y + T 33 P .+ P3 0

with

PYL applied load vector in local axis = P1, P2, p3

G :applied load vector in global axis = pz, py, Pz

The other three differential equations describe the equilibrium of the local moment

resultants M, M 2, M 3.

cOM M2 + ,7M 3 + TI Im + T2 My + T3m, + M I = 0

OsM
O~2

--- KCMI -rfM3+T 21m.+T 22 M+T23m+m2-F3 = 0 (2.8)
OM3s ;,7Ml +r-M2 +T3 + T32m + T3m,+ M3 +1F2 = 0
Os

with

rAL applied moment vector in local axis = n 1 , M 2, M 3

AG applied moment vector in global axis = m,, m., n,

In helicopter problems, generally two kinds of loadings are arised; inertial loads that

include normal and angular acceleration, Coriolis acceleration, centrifugal and gravi-

tational forces, and aerodynamic loads that include both steady and unsteady parts.

The former group usually appears as the global fG, Tic while the latter group appears

6



as the local /L, and rnL. In the present analysis only the normal, angular acceleration

and gravitational loads are considered. Hence for a blade without mass centroid offset

Pr =-rn

P= -my

P, = -m '-mg (2.9)

=, M = MS= 0

and

Pi P2 = P3 = 0

ml -I9 (2.10)

Finally, a set of generalized stress-strain relations are incorperated via the following

six linear equations.

F1  Ell E12 E 13 E14 E15 E16

F 2  E22 E23 E24 E 25 E26 -te

F 3  E33 E 34 E 3s E3a "fc (2.11)
gl - E44 E45 E46 

M2 SYM E55 E56 Kn
M 3  E" .aC

Here " represent the two transverse shear strains. In its most general case, the

above stiffness matrix can be full, i. e. there can be couplings between all of three

force resultants, three moment resultants and all of six strain components. However in

consistancy with the earlier assumptions of a Bernoulli-Euler beam, the calculations

of the two shear strains are completely ignored during the current analysis.
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2.2 Reduction of Basic Equations for Moderate
Deflections

Before proceeding with the large amplitude vibration solution of the basic nonlin-

ear equations presented in the previous section, the equations of motion in u, v, w,

and 0 that were derived by Hodges and Dowell, Ref. 4, and Boyd, Ref. 5, for mod-

erate deflections will be rederived from the twelve general nonlinear equations 2.5

through 2.8. Only the case of isotropic blade with no mass centroid offset is consid-

ered here for illustration. In this way, the approximations of the moderate deflection

analysis can be assessed.

The first step in the reduction process is to rewrite the force and moment equi-

librium equations in global z, y, z directions instead of local , 71, ( directions. One

can write the local force equilibrium equations 2.7 in vector form as

-- + [n]T FL + [TJG + L= 0 (2.12)

where L, and G refer to local and global components. Multiplying by T]T and noting

the basic kinematic relations given by equation 2.2 gives,

]r~T 8 FL _ ]jT]T

[T Os rsfL + PG + [T]T-fL =( 2.13)

and upon rearranging,

-F- + FGT = 0 (2.14)

where one has

fGT = IPG+ [T]P TL

FG = [T] FL (2.15)

FL = [T Fc

8



In scalar form, equation 2.14 becomes,

as PxT

as PUT (2.16)

OF,

--s - PZT

Similarly, one can write the local moment equilibrium equations 2.8 in vector form

as,

(9ML
s + fT'jL + [TJAc + rL + -F 3  = 0 (2.17)

F2

Applying the same transformations as for the force equilibrium equations results in,

0M- + rGT + [T] -F3  = 0 (2.18)

where one has defined,

tAGT = rnG+[T]TLL

MqG = [TI ITL (2.19)

Mf'L = [T]MSfG

In scalar form, equation 2.18 becomes

OM,I- + Mr - T21 F +T3 1 F 2 = 0

aMw+ -T2F +T32F2 = 0 (2.20)

OM,(9 , + M.T - T2 F3 + T3F2 = 0

The local force components are related to the global components from equations 2.15

as

9



F1 = TIIF,+Tl2F,+Tl3F,

F2 = T21F,+T 22 F,+T 23 F, (2.21)

F3 = T31F±T32 F+T33F.

One places the above into equations 2.20 and simplifies by using the following relations

obtained from noting that [T]-' = [T]T and applying Cramer's rule with T[ = 1.

T, 1= T22 Ta3 - T 23 T 32

TI = T23 T31 - T21 T33 (2.22)

T 13 = 7'21 T32 - T 2 2 T 3 1

This will result in the three scalar equations,

OM,am"- + Mx7- - T13 Fy + T2 F. = 0
OM
a--- + rnyT+ T3 F - T, F, = 0 (2.23)

-9+M T-Tl2 F.+TllF, =0Os

Taking the derivatives of the last two equations and introducing the force equilibrium

equations 2.16 gives

O(2M OMnT 0Os2 + Y +-(Tl3F.)+TIIPT-F.-- = 0
(2 O, Os " OI
as2 + -s -(l2---s~y+F - = 0 (2.24)

In addition to these, it is convenient to keep the local moment equilibrium in the

direction,
0M1a m , - C M 2 + r-n M 3 + MI]T = 0 ( .5
-Kas 2  K, 3 + I= (2.25)

The above moment equations together with the three global force equations 2.16 are

the equivalent of equations (71 b, c) (74), and (69 a, b, c) of Hodges and Dowell, Ref.

5. No approximations have been made as yet in equations 2.16, 2.24, 2.25.

10



The second step in the reduction process is to look at the kinematics and to

approximate the Euler angles, ik and 0 in terms of global deflections, v and w in the

z and y directions respectively. From the kinematic relations equations 2.6, one has

, ay
v = T = cos3sin

az
w1 = = sin3 (2.26)

where

'(9

and the axial strain e has been neglected relative to unity. These equations give rise

to the trigonometric relations, to second order,

sin,3 =w'

cos, - 1 - w' 2/2

sin4 V) v' (2.27)

cos 0 1-v' 2 /2

so that effectively, the two Euler angles 3 and 0 are approximated to second order as

' V, (2.28)

By differentiating equations 2.27, then solving for 3' and 0" keeping terms only to

second order, one obtains the same expressions as would have been obtained by

simply differentiating equations 2.28 directly. Finally, substituting the 3' and 40' into

the three curvature strains nf, v,;,, roc given by equations 2.4 and keeping terms to

second order, results in,

11



x( + W, V'

Vn ifv sin 0 - w" cos

xc v"cos 9 + w"sin 9 (2.29)

The three curvature strains are now expressed, to second order, in terms of global

deflections v, w and Euler rotation angle 9. Often, it is more convenient to express

the twisting behavior of the blade in terms of a total twist angle 0 which is defined

as,

0 = jKr ds = 0 + wIV'da (2.30)

In this case, the curvature strain nf and the Euler angle 9 are replaced in equa-

tions 2.29 by,

C =

0 = €- w'v"ds (2.31)

Since the correction to the Euler angle is a small nonlinear term, it is often neglected

and the relation 9 "- 0 is used.

The second order approximations to the Euler angles as given by equations 2.27

are also used for the general transformation matrix [T]. Placing these trigonometric

relations into the basic transformation matrix [T], equation 2.1 gives to second order,

1 - v' 2 /2 - w'/2 V' W'

-(v'cos9+w'sin9) cos9(1-v 0/2) sine(1-w'/2)
[T] (2.32)

(v'sin 0 - w'cos 0) - sin 9 (1 - v 2 /2) cos 9(1 -w' 2 /2)

12



The third step in the reduction process is to relate the moment resultants to the

curvature strains, and then to the coordinates v, w, 9. Using the generalized linear

stress-strain relations given in equation 2.11 and introducing the strain-displacement

relations of equations 2.29, one may write,

I, = E44 r z- GJ (9' + wv")

M 2 = E5 5 n , - E,(v" sinO- w" cos8) (2.33)

M 3 = E66rc - EI (v" cos 9 + w" sin 9)

The above are for a blade pricipal axis system located along the elastic axis, where

there is no coupling between the , 77, and axes. For non-principal axes, there

may be additional couplings between 7 and and for non-elastic axis, such as in

composite blades, there may be additional couplings between the 4 and 77 and and

" curvatures. For use in the equilibrium equations 2.24, it is also required to express

the moments in global x, y, z directions in addition to the local , t7, C directions

given by equations 2.33. From equations 2.19, one has

S- T -11 1 + T21M2 + T31AM3

My- T12MI + T22aM 2 + T32A 3  (2.34)

M.- T13M1 + T23M 2 + T3M 3

This gives, to second order,

M = GJ'v' - (EIC sin 2 9 + EI, cos 2 9)w '

EIC - E1,) cos 0 sin 0 v"

M, = GJ O'w' + (EIC cos2 9 + El,, sin' 9) v (2.35)

+(EIC - EI,) cosesin ew"

Mr is not given above, since in the present formulation, the local moment M is used

rather then the global moment M.
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Finally, to complete the reduction process, one places the moments equations 2.35,

2.33 and curvature strains equation 2.29 into the equilibrium equations 2.24, 2.25 to

obtain,

[GJ e'v' - (EIC sin 2 0 + EI,, cos' 0)w" - (EIC - EI,,) cos 0 sin ev"]"

+(w'F)' + (1 - v'2 /2 - w' 2/2)p.T - F- (v'v" + w'w") + M'YT = 0

rGJ 9' W' + (EIC cos 2 9 + ElI,, sin 2 0 ) v" + (EI( - EI,,) cos 9 sin 9w"]"

-(v'F,)' + (1 - v/2 - w'/2)pT + F. (v'v" + w'w") + m'ZT = 0 (2.36)

[GJ (9' - w'v")]' - (EIC - EI,)[(w' 2 - v"' ) cos 9 sin 9 + v"w" cos 29]

+miT = 0

The force loadings F,, Fy, F, in the above are found from integrating the global force

equations 2.16. For free vibrations, the inertial loer,,s . y, P. and ni are given

by equations 2.9 and 2.10.

Although the above equation- have been reduced formally to second order, some

further simplicaticas are still made to reduce them to a simpler form. First, as

mentioned in Ref. 4, by integrating the third equation, then multiplying it by v', then

subtracting it from the first equation, one can eliminate the GJ 9' v' term, introducing

only new third order terms from the third equation. Hence, to second order, the

GJ 9' v' term can be neglected. Similarly for the GJ 9' w' term in the second equation.

Next, the v'2 and w' 2 terms can be neglected compared to unity for moderate deflection

slopes. This would also eliminate the F. and F, terms since they were multiplied by

7 and T11 is now set equal to unity as seen in equation 2.32. Along the same lines,as

all derivatives
a
(9

in these equations can be replaced by

Ox
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since from the kinematic relations, equations 2.6,

a _9 a9Z 82/ -8/)a,
- -a- (1 - w (2.37)

Also, it is convenient to introduce the total twist variable € as defined by equation 2.30

rather than deal with the Euler angle 9. With these simplifications, the previous

eqautions can be rewritten as,

W (,I sin'2 9 + EI, cos2 9) w" + (EIC - El,,) cos 0 sin 0v'j"

-(w' Fz)' = PT + 7'IIT

V !'(EIc cos' 9 + EI, sin 2 9) v" + (EIC - EI,,) cos 0 sin 9 w"]"

-(v' Fr)' = PiT - r (2.38)

-(GJ + (El - El,,) [(w"2 - v"I2 ) cos 0 -in 9 + v"w" cos 293

-MiT

where one has,

0 at T- w v"dz

F, + px dx (2.39)

E u' + v' 2/2 + w' 2 /2 = 0

Equations 2.38 are effectively the nonlinear moderate deflection equations presented

by Hodges and Dowell, Ref. 4, Boyd, Ref. 5, and others. They have been shown

to arise from a straightforward reduction of the general nonlinear, large deflection

equations given by Minguet and Dugundji, Ref. 1, and presented here in section 2.1.

Often, the relation 9 s- 0 is used in place of the more accurate r -Ntion given by

equations 2.39. The e = 0 relation of equations 2.39 represents an effective no stretch

condition and is used to determine the axial deflection u since v and w deflections

have been determined. For vibration problems the inertia loadings are given by

equations 2.9 and 2.10 with -Ip replaced by -Ipo.
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One last item of reductions of these equations comes about by eliminating the

trigonometric functions in them. For a flat blade without built-in twist, Of = 0, the

trigonometric functions can be expanded to second order as,

sin9 0 9

cos 9 = 1_92/2 (2.40)

Placing these into the previous equations 2.38 gives the more useful form,

w: [(EI,, w" + (EIC - El,) (v"e + W" 2)]"

-(w'F.)' = P.T + MroT

v [EIC v" -4- (EIC - EI,,) (w" -9 _ v" 92)]11

-(v'F.)' = P,,T - mzT (2.41)

-(GJ 0')' + (EIc - EI,)[(w"2 -v1 2 ) +v"u" W

= MIT

This form shows more clearly the type of nonlinear couplings involved between the

w, v, and 0 motions. These nonlinear couplings depend on the difference in bending

stiffness, (EIC - EI,,), and would give rise to linear couplings by the presence of an

initial static deflection in w and v. Similar equations can be obtained for blades with

an initial twist O, by replacing equations 2.40 with,

sin(Ot + 9) sin 0, 9 cos 9 -KSO2/2)'sin O

cos(O + 8) cos9, -9 sine,- (02/2)cos O, (2.42)

Aithough the moderate deflection equations 2.41 lend themselve!s well to Galerkin

solution, one should be careful to use a sufficient number of modes to capture the

nonliner effects when static deflections are present. They can always be checked

against the general solution of the twelve nonlinear differential equations presented

by Minguet and Dugundji, Ref. 1.

16



Before leaving this section, it might be interesting to note that the moderate

deflection equations can also be derived from an energy formulation by minimizing

the total potential energy U of the functional,

1 fL EI, (w" cos 8 - v" sin 0)2 dz

+ fL EIC (w" sin0 + v" cos) d2 "L

1 L

+ j F.(w'2 +v'2 )dz

- (PUT V + PzT W - mT W' + m.T V + mT €) dz

A simple application of variational methods will lead to the moderate deflection equa-

tions given by equations 2.38 and 2.41.

2.3 Modeling of Large Amplitude Motion

In Ref. 1, the basic equations given in section 2.1 were linearized around a given

static position to yield a small, perturbed free vibration. An appropriate eigenvalue

problem was then solved to find the various mode shapes and their associated natural

frequencies. This eigenanalysis is not useful for large amplitude motion because once

structural nonlinearities are present in both static and dynamic sense, the natural

frequency of a particular mode becomes a function of amplitude of that mode. Fur-

thermore, it is also expected that certain amount of couplings exist between the static

and dynamic components in the various variables. Thus two basic characteristics that

distinguish the nonlinear, large amplitude vibration from the linear, small vibration

can be summarized as follows.

(1) The natural frequency of a particular mode changes as its amplitude increases.

(2) The static mean position of the beam can also change as a function of amplitude.

Two popular methods for the solution of general nonlinear dynamic problems are

direct numerical time integration of the basic equations, and the harmonic balance
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method. The former method will give the exact solution which shows the effects

of all possible harmonics, while the latter method will yield a solution with only

few harmonics. The direct time integration requires a set of governing equations

that contain only time t as independent variable. By performing appropriate modal

analysis, one has to reduce the equations of motion into a modal form, expressing

them as functions of generalized coordinates. Usually, a large amount of computing

time is used until the solutions reach their final steady states.

In the present analysis, the harmonic balance method is used because we do not

want to begin with a set of approximate modal equations which are based on an

ordering scheme, but rather use the large deflection equations of section 2.1. These

twelve differential equations contain all the twelve variables, i. e. three Euler angles,

three force resultants and three moment resultants, in addition to the usual three

displacements z, y, z as their independent variables. In such a situation, it is more

insightful to assume the time dependency of the solution in the the form sin wt, and

use numerical integration in space rather than in time. In doing so one loses, of

course, the effects of higher harmonics, but the key arguement is that in most of

the nonlinear analysis, amplitudes associated with the first harmonic take the largest

quotient,and therefore are most critical in determining its response or stability.

Thus for the purpose of present analysis, all quantities are assumed to be of the

following form

X(w, t) = Xo(u) + X.(w) sin wt

where Xo, X, represent the static part and the associated amplitude (not a small

quantity) around that static part, respectively. The fact that X, is not a small

quantity is reflected in the frequency dependency of both Xo and X. Hence, unlike

small vibration problem, there exists one-to-one correspondence between amplitude

and frequency.

The analytic modeling consists of substituting the above expression for each

variable into the twelve governing equations. As a result of multiplications involving

18



sin wt, this will produce many higher order terms containing higher harmonics such

as sin 2wt, sin 3wt. For details of how these multiplications are performed and what

the resulting coefficients are, see the Appendices. A harmonic balance method is

then employed to retain only two kinds of terms; the ones that are constants and

the ones that are coeffcients of sin wt. All the higher harmonic terms are left out.

Some of the remaining terms will contain higher order of magnitude terms, for ex-

ample, sin 4 wt produces the constant 3/8 even after neglecting its higher harmonic

components cos 2wt and cos4wt. It is clear that keeping all these higher order of

magnitude terms will make the equations extremely long and unwieldy. Hence, an

ordering scheme that keeps magnitudes of up to third order is employed to maintain

a consistent level of nonlinearities in all of the equationE. See the Appendices. It is

emphasized that this ordering scheme does not mean

02
cos9 -1- - + H. 0. T.

2

but rather

1
cos 9 -- cos 0o - sin 60 A9 - I cos 9o (AO) 2

2
1.

+- sin 9o (AO)' + H. 0. T.
6

where 0 = 0 + A9, and the 00 and A9 = 0, sin wt represent the static and d- namic

components of 0. So the complete nonlinearity in the large rotations is still kept in a

static sense, but as a strategy, terms only up to third order are kept in the dynamic

counterparts.

One point is noted here; applying the harmonic balance followed by the approxi-

mating schemes will not render the final twenty four equations completely compatible

with each other. More specifically, these coupled equations would not satisfy equilib-

rium, geometric compatibilities, and stress-strain relations perfectly as their original

19



twelve versions would. Therefore, one should expect deterioration in the degree of

compatibility as amplitudes increase. Normally this would mean loss of accuracy in

the solutions, or in the worst case, even the loss of convergence. However, as shown

later in this report, this does not impose serious computational limits in most of

practical range of amplitudes.
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Chapter 3

Method of Solution

Having obtained all the necessary formulations for the large amplitude, nonlinear free

vibration model, one can express the equations of section 2.1 in vector form

- go(Xo,X,) (3.1)
d.9

(12 x 1) (12 x 1)

and
dX8ds - g.(Xo,X" w) (3.2)di

(12 x 1) (12 x 1)

where

Xo = [Fl F2o F3o MoMM 0 M3o yo zo o 3o 003o0

X = [Fl F2& F3# Moa M 2, M3o Z o e o Z 0 1

The two vector function arrays go and g. contain many product terms involving

multiplications of two, or three harmonic quantities. They, of course, originate from

the twelve basic equations that are presented in section 2.1. Multiplications of

harmonics and calculations of the coefficients of the resulting new harmonics can be

easily implemented according to the formulae in the Appendices.

To solve this system, all of the twenty four equations (now twelve for the static

part, twelve for the dynamic part) are first integrated from the tip to the root of the
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btade once. In the previous TELAC report Ref. 1, Minguet used a finite-difference

iteration method for the solution of static deformation, sweeping from the tip to

the root and vice versa a few times until all the residues become very small. When

applying this scheme to the solution of mode shapes and their frequencies, one has

to be cautious because this finite-difference iteration will usually converge to the first

mode only. To obtain higher modes, one must consider other integration techniques

which do not sweep back and forth along the span but are more appropriate for

boundary value type problems. Among such, Runge-Kutta integration is frequently

used and very effective. Currently fourth order Runge-Kutta algorithm is used.

In the early step of numerical integration, one has to guess boundary values of

displacements and rotations at the tip as well as the frequency that will make, for

a given mode shape, all the displacements and rotations at the root as close to the

prescribed values as possible. For instance, a inear solution by Minguet can provide

such a good guess for tip values X2 . The functional relationships between these two

sets of boundary values at the root and at the tip can be written as

X, = f(X,,w) (3.3)

(12 x 1) (12 x 1)

where

Xt= [OZ&YOY8ZoOO9/O8. ,OOO P5 J 1

at the tip, and

x' = [oo0oooo0 I80o0o )T

at the root.

Here 60 ,,-,bo are prescribed values at the root (they are zero for flat cantilever

blades). Since the initial guess for the twelve components of X, can not be perfect,

there will be nonzero residues R by the time the integration reaches the root. A

Newton-Raphson type algorithm can then be used to produce a better set of boundary
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values based on the current values. This will produce a series of the following set of

boundary values.

x = X' - J(Xt")'R (3.4)

where

R"=- f(XnIUw ) - Xr

and

J : (12 x 12) Jacobian matrix

Here the superscript n refers to the n th iterative values, and X, refers to the desired

values at the root. The n th boundary values X" at the tip will eventually march to

the true solution, provided it exists. Currently two algorithms called F. D. G. (finite

difference Gauss' method) and F. D. L. M. (finite difference Levenberg-Marquardt

method) (Ref. 7), respectively are used. The former is simply a numerical version

of Newton-Raphson method, and in the latter case, an efficient relaxation scheme is

added.

It is noted that whatever algorithm is used, it must take iterations on the frequency

as well as the boundary values, since it is not known in advance at which frequency

a mode will happen for a given amplitude level. Therefore, one of the six boundary

amplitudes at the tip Zy,, zo,, ,,t,, is replaced by the frequency w, and the

replaced displacement is fixed throughout iterations. Which one has to be fixed

depends on which mode is being sought. For instance, if bending modes are of concern

it will be zo; if it is torsional modes then 0, is fixed. The iteration will march until

the boundary conditions at the root are met, i. e. , the residues Rn are zeros or at

least less than some preset f where e < 1.

As a final notion, the above solution procedure, when applied to finear problems,

is similar to the so called transfer matrix technique used to obtain helicopter blade

vibration modes by Isakson and Eisley in Ref. 8.
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Chapter 4

Results and Discussion

The prescribed algorithms have been used to investigate the first and second bending

modes, first fore-and-aft modes, and first torsion modes of cantilevered blades with

the lay-ups [0/9013,, [45/0], of graphite/epoxy for various tip deflections. These modes

were chosen because 0- - have the lowest natural frequencies and hence should be

easily converged. -,, _.ermore, they pose much importance from a aeroelastic point

of view. The c nfigurations of the blades investigated are those used by Minguet in

Ref. 1 (560 mm long, 30 mm wide). Beam material properties of these lay-ups are

listed on Table 1. To see how these coefficients are calculated, refer to section 2.6 of

Ref. 1.

The static deflections were vaxied by imposing and adjusting uniform gravity level

throughout the blade. As stated earlier, one of the six boundary amplitudes at

the tip was replaced by w, and the replaced amplitude was fixed throughout the

iterations. The z,, y., and 9, were fixed for bending, fore-and-aft, and torsional modes,

respectively. Also, 90,00,,0, at the root were all set equal to zero since the blade

is a flat cantilever beam. A total of 16 node points were used along the blades.

Note that the same number of nodes was also used in Ref. 1. All of the cases were

guided by the linear results by Minguet. That is, the linear mode shapes and their

natural frequencies provide reasonable trial values which, after a few iterations, would

lead to nontrivial solutions. All the runs were made on a DEC Microvax computer

with typical number of iterations from 5 to 10 for convergence. Each iteration took
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approximately between 15 to 30 seconds of CPU time, longer times being required

for cases with strong structural couplings. Very often, it was necessary to use under-

relaxation to lead iterations smoothly to the final solution without causing divergence

or any sudden jump into another nonlinear solution (In fact, both F. D. G. and F.

D. L. M. algorithms assume use of certain under-relaxations). Each analysis was

continued until the amplitude could not be further increased. At this point, the

Jacobian matrix became almost singular and the solution did not converge.

Before illustrating the results in detail it is worthwhile to mention that in linear

problems where perturbations are very small, the present analysis would be slightly

superior to Ref. 1. The present analysis is based on a continuous model while Ref. I

is based on a lumped, finite difference model.

The first example is that of the [0/9013, specimen. Figure 3 through figure 26

show mode shapes at two amplitude levels under three different static tip deflections.

It is seen that for most of the amplitude range, the nonlinear modes remain almost

the same as linear modes in their shapes even though their frequencies change. Next,

figure 27 through 29 show change of natural frequencies as functions of amplitudes

z,,y,, and 0, at the tip. Also Figure 30 and 31 represent the variations of the cen-

tershifts zo at the tip of various modes as functions of the tip amplitudes. From the

figures the following two observations can be made.

(1) Increasing amplitude level has slight stiffening effects in IB, 2B (or any bending

modes, presumably) whereas it has significant softening effects in IF, iT modes,

particularly for moderate range of static tip deflections. As a result, the natural

frequencies of bending modes rise slightly with amplitude level while those of iF and

iT modes always drop.

(2) The above frequency changes are accompanied by centershift changes. Increasing

amplitude levels has slight effects on the centershifts of bending modes except for

the 2B mode, whereas it has significant centershift increase for the iF mode and a

centershift decrease for the iT mode, particularly for moderate static tip deflections.
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The behavior of these centershift changes seem relavant to the linear findings in Ref.

1 (see figure 33).

Figure 32 presents the effects of second harmonics on the natural frequencies of

1F modes. It was found that including terms involving the second harmonic cos 2wt

in two-dimensional sense was enough to capture the missing second harmonics in 1F

modes. In other words, only F,F 3,M2, and /3,z,z were expressed in the form

X(w, t) = Xo(w) + X.(w) sin wt + X 2,(w) cos 2wt

with all other variables containing only the first harmonics as before. This was done

based on the intuition that second harmonics will mostly appear in z,, z, and their

motion should be initially 90 degrees out of phase with the rest of amplitudes. Then

a new set of formulae that performs multiplications of harmonics was implemented

in the computer program. These are different from the previous ones in the appendix

in that they now have to deal with cos 2wt as well. The resulting Jacobian is then

(15 x 15) instead of (18 x 18) which would result if cos 2wt were introduced in ail

of the variables. As can be seen from the plots, 1F modes exhibit significant second

harmonic contents in z, motion for moderate range of static tip deflections (roughly,

from 20 mm to 80 mm.) as amplitude is increased. On the other hand, at either zero

or very large tip deflection the second harmonics are almost unrecognizable. In fact,

z, has no first harmonic content in IF modes. An effort was also made to seek for

any second harmonics in 1T, 1B and 2B bending modes, but they have been found

very weak and are not presented here.

Next example is that of [45/0], which, unlike the previous case, exhibit bending-

torsion coupling. Due to the structural coupling, computer time was increased and

the convergence became more sensitive. This resulted in earlier breakdown of nonsin-

gularity of Jacobian matrix which in turn caused shorter range of solutions available

as functions of amplitudes. Figure 34 through 57 show mode shape changes at two

amplitude levels under three different tip deflections. Once again, the mode shapes

do not change significantly from the linear modes. Figure 58 through 62 show the
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frequency and centershift changes as the amplitudes of various modes increase. The

two former observations (1) and (2) can also be made in these figures; a similar anal-

ogy about the relationship between frequency and centershift changes can be also

made. The effects of second harmonics on the natural frequencies of IF modes is

shown in figure 63. Unlike the previous case of [0/9013,, the presence of second har-

monics is relatively weak. In particular, due to the existing bending-torsion coupling,

the static tip deflection will not lie on the z axis, and the IF motion is not symmetric

about the z axis even though the root angles here are again zeros.

Finally, it is interesting to consider what makes the Jacobian matrix singular at a

certain point along the way of increasing amplitude. Except for the cases of 1B, there

seem to be certain limits on the largest amplitudes that can be solved by the current

algorithms. These limits were even more severe if second harmonics were included.

In section 2.3, it was suggested that one should expect deterioration in the degree

of compatibility as amplitudes increase. This could be one possibility. Apart from

that, other factors may attribute to the singularity of solution; the round-off errors

associated with the large size of Jacobian matrix, and the interaction of several modes

as amplitudes increase, with possible resulting chaotic vibration.
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Chapter 5

Conclusion

Throughout the research period, it has been demonstrated that the nonlinear analysis

derived from work by Minguet in Ref. 1, and iteration methods based on harmonic

balance and numerical integration of the basic equations seems efficient for large

amplitude vibration problems of composite rotor blades. These include the nonlinear

free vibration problem which is presented here, and nonlinear limit cycle problems

with dynamic stall in hover and possibly in forward flight, which will be investigated

as parts of future work.

For the free vibration part, it has been shown that both large static deflection and

large amplitude can affect significantly the fore-and-aft modes and torsion modes, but

not much the bending modes. More specific conclusions are as follows.

(1) Increasing amplitude level has slight stiffening effects in bending modes whereas

it has significant softening effects in 1F, 1T modes, particularly for moderate range

of static tip deflections. As a result, the natural frequencies of bending modcs rise

slightly while those of 1F and iT modes always drop.

(2) Increasing amplitude level of a particular mode also results in centershift changes

that are small for the bending modes but significant for the iF and IT modes,

particularly for moderate static tip deflections. The iF centershift seems to increase

cunsiderably with amplitude level. The behavior of these centershift changes seem to

stem from the linear findings in Ref. 1.

(3) The flat [90/013, or any isotropic blade with zero root angle has significant second
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harmcaic contents in the IF mode for moderate static tip deflections. These appear

mostly in the bending amplitude z°. If the root angle is not zero, or there is bending-

torsion coupling however, the second harmonics are not as strong.

The conclusions made during the research period should give insight into more

general nonlinear, large amplitude analysis such as proposed by Dugundji (Ref. 9) for

future investigation.

Regarding the future work which is specified in Ref. 9, nonlinear limit cycle anal-

ysis of composite blades in the presence of dynamic stall is currently being pursued.

The structural nonlinearities are well represented by the current model, and for the

aerodynamic nonlinearity, the ONERA model developed by Tran and Petot in Ref.

10 is used. The analysis begins with a simple two-dimensional motion with bending

modes only (called "bending stall"), and later will go into three-dimensional motion

with additional torsion and fore-and-aft modes as well as centrifugal forces, Coriolis

acceleration, and coning angles also present.
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Appendix A

Calculation of Coefficients of
Harmonic Quantities

In section 2.3 it was suggested that for large amplitude motion, every variable be

expressed as

X(w, t) = Xo(w) + X,(w) sin wt

where Xo,X, represent the static and dynamic components of a particular variables.

As a result, all the quantities in the original twelve governing equations will take the

above form immediately. Recall, however, that many of the terms in the equations

involve trigonometric functions and their arguments are the three Euler angles vy3 ,9 .

Then it is clear that one can not apply harmonic balance method with the Euler

angles expressed as above and themselves inside the trigonometric functions. So, it is

useful to rely on series expansion versions of these trigonometric functions. In order to

get the series expressions, let z represent any of the three Euler angles, and let X(X)

be any trigonometric function, i. e. cos z, sin z, tan z, or 1/ cos x. Then substituting

z = zo + x, sin wt

into the function X and expanding in a Taylor series about xo yields
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X(z) X(zo) + W-(zo)a x.sinwt

d2X d3 X
+1/2! -. (zo) z2 sin 2 t + 1/3! d o, sin 3 wt (A.1)

= Xo +X.sinwt

+X, 2 sin 2 wt + X, 3 sin 3 wt + H. 0. T.

where

Xo X(Xo) (A.2)

dXX° _ dzoz, (A.3)

X,2 = 1/2! d2X (o)2(

yy X) z (A.4)

X 3 E 1/3! d37 (X0 ) z° (A.5)

Here according to our ordering scheme only terms up to third order are kept in

the expansion (see section 2.3). Then, when applying harmonic balance methods,

the sin 2 wt and sin 3 wt can be expanded into constant and sinwt type terms after

multiplication with other harmonic quantities, as shown in Appendices B and C.

In the current analysis four different trigonometric functions are encountered..

They are cos z, sin z, tan z, and 1/ cos z. According to above expansion rules then

each trigonometric function can be expressed, up to third order, as

cos z = cos zo - (sin zo) z, sin wt - 1/2 (cos zo) z, sin' wt

+1/6 (sin zo) z3 sin3 wt (A.6)

sinz = sin zo + (cos zo) Z, sin wt - 1/2 (sin zo) x. sin 2 wt

-1/6 (cos zo) z, sin 3 wt (A.7)
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tanx = tanzo i (1/cos 2 Zo)Z, sinwt + (tanzo/cos 2 zo)zo sin 2',w

+i-1/3 ((2 tan' to + 1/cos2 zo) / cos xo) 3  wt (A.8)

1/cosz = 1cos o + (tan zo/ cOS zo) z sinwt -+- 1/2(1/cosz3 o -+- tan2 x o /cosx)
2 ~ in 2 wt + 1/6 (5 tan zo/cos 3 xo - tan 3 z 0/ cos zo) z, sin 3 C,.t (A.9)
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Appendix B

Multiplication of Two Harmonic
Quantities

In the previous section it was seen that any harmonic quantity can be expressed, up

to third order, as

X = Xo + X, sinwt + X, 2 sin 2wt + X,3 sin 3wt (B.1)

where Xo,X,,X, 2,Xo3 are determined by the formula A.2. X(z) could be either a

harmonic variable itself (e.g. F,M,z,... e t c. ) or a trigonometric function. If it is a

harmonic variable Xo2,Xo3 are identically zero. Now let's consider a product of two

quantities, X and Y which are expressed as above. It can be shown that

X Y = (Xo + X. sin wt + X,2 sin2 wt X,3 sin 3 wt)

. (Y + Y, sin wt + Y, 2 sin 2 wt + Y 3 sin 3 wt)

= (XY)o + (XY),sinw t + (XY),2sin 2 Wt -- (XY),3sin 3 Wt (B.2)

where

(XY)o XoY

(XY) - XoY, + X,Yo

(XY). 2  XoY.2 + XgYs + X, 2 Y

(XY)o 3  XoY.3 + X.Y.2 + X.2Y, + X.3 Y

35



When applying harmonic balance method only the static and the first harmonic terms

are retained. For this purpose note that

sin 2 wt = 1/2 - 1/2 cos2wt (B.3)

sin3 wt = 3/4 sinwt - 1/4 sin 3wt (B.4)

So after neglecting higher harmonics one gets

X Y = [(XY)o + 1/2 (XY), 2 ] + [ (XY), + 3/4 (XY). 3] sin wt (B.5)
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Appendix C

Multiplication of Three Harmonic
Quantities

Some of the governing equations contain products of three harmonic quantities.

Multiplication of three harmonics X,Y,Z can then be performed as a series of two

multiplications involving two harmonic quantities as follows.

XY Z = (XY)Z

= [(XY)o + (XY),sinwt + (XY),2 sin 2 t + (XY), 3 sin 3 wtl

(Zo + Z, sinwt + Z,2 sin 2 wt + Z,3 sin 3 wt) (C.I)

= (XYZ)o + (XYZ),sinwt + (XYZ), 2 sin wt + (XYZ), 3 sin 3 
;t

where

(XYZ)o S (XY)oZo

(XYZ)o (XY)oZ, + (XY),Zo

(XYZ). 2  (XY)oZ, 2 + (XY)aZ, + (XY), 2Zo

(XYZ), 3  (XY)oZo3 + (XY),Z. 2 + (XY), 2Zs + (XY), 3 Zo

and

(XY)o = XoYo

(XY). = XYo + X.Yo
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(Xy).2  = XOY 2 +X.Y. + X 2Y

(Xy). 3  = XOY. 3 +X,Y, 2 + X 2 YS + X 3 Y

as before. Once again, neglecting higher harmonics one gets

X Y Z ((XYZ)o + 1/2 (XYZ), 2] + [ (XYZ), + 3/4 (XYZ), 3 ] sin wt (C.2)
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Table 1: Beam Mfaterial Properties (AS4/3501-6)

0/9013o Laminate t = 1.49 x 10- m
m = 0.0683 kg/m Ip = 5.13 x 10-6 kg. n
E 1 1 =3.68 x 106 N E 22 =0.26 x106 N E3=2.9x 105 N
E44 = 0.183 N. M 2  E55 = 0.707 N. M 2  Es = 276 N. m2

145/01, Laminate t = 1.49 x 10-3 M

m = 0.0238 kg/m Ip = 1.66 x 106 kg. in

E 1 = 1.32 x106 N E 22 =0.27 X106 N E3= 1.0 x105 N
E44= 0.0195 N. m2 E5 = 0.0143 N. M2  E = 99.1 N. m2

= 1.0 × 106 N E4.5 = 0.00632 N. mA

Note: in more conventional terms,

Ell EA E22  GAn E33 GAC

E 4 4 -GJ E55 EI,7 E 6 oEI

E12 i- Extension-shear coupling

E14 - Extension-twist coupling

E45 - Bending-twist coupling
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Local axes

z9

Global axes Y x

Figure 1: Definition of global and local axes
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Figure 2: Definition of local internal forces and moments
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21 aefm-n 0 mm

J7 *~z I0 nru 8P

I

0 0 87 5 1750 262S 3500 427 5 5250 6125 'MO 0
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Figure 3: First Bending Mode; 0/90.3,,0 mm tip deflection,Zs=10 mm

r focDhon * 0 mm

XS Yl C86

J 875 750 2625 . 0 4375 5250 6125 ? 0

Figure 4: First Bending NMode;'0/90 oO mm tip deflection,Zs=200 mm
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tip C4~f A 0 mm
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36 17 Hz

Zs- 10mm OW

a Za

/

/
/

/

XI. Ye. C'es
"\ /

30 87 5 17so 2625 1w0 Q75 5250 8125 7000

Figure 5: Second Bending Mode;O/90)3 ,,O mm tip deflection,Zs=10 mm
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28

- 4021Hz
Zs / 00 mm @Wip

Xs. Ys\.'
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Figure 6: Second Bending Mode;[O/90]a.,O mm tip deflection,Zs=100 mm
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E
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Simmi

Figure 7: First Fore-and-Aft ModeFO/9013 .,0 mm tip deflection,Ys= -n

ri oaftmi .0 mm

I F
113 6HZ

E

xS. Z& ceg

0 0 87 5 17560 262 5 350 0 437 5 5250 V125 ma0

S(MMI

Figure 8: Fir:;t Fore-and-Aft Mode;'O0 90'3,, mm tip deffection,Ys=U38 mm
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I1"
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x3, Ya. ZS

J 0 87 5 75 0 2625 1w00 4375 5250 6125 7O

Figure 9: First Torsion Mode;[0/90 3 ,,0 mm tip deflection, 0,= 5 degree
Aio0oa MO

Tip Dfauco, -0 rm

ITT

z 64 32 HZ
S.*20 desgree 0

xS. Y. ZS

00 a75 750 26.25 1w0 Q 7o 5 S250 6;25 7wo0

Figure 10: First Torsion Mode;(0/903.,0 mm tip deflection, 0,= 20 degree
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(MS Z

ZS -0 mm @tip

Z5
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87 5 750 262 5 3500 ,375 5250 6125 7000
S.mmf

Figure 11: First Bending Mode;iO/90! 3,,59 mm tip deflection,Zs=10 mm
0 0pa, 8m.

6H

iss * o00s vo ;@' o

Sz

00 87 5 175 0 2625 3500 4375 $250 Sf2 5 no 0

Figure 12: First Bending Mode4',0/90]3 ,59 mm tip deflection,Zs=200 mm
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Figure 13: Second Bending Mode;[O/9OJ3.,59 MM tip deflection,Zs=lO rmm

28

30 41 MZ

.s80m MM aw

/Zs

0 Ys. C'es

67 85 1750 2625 1500 4375 $n~o 6125 70

Figure 14: Second Bending Mode; O/9013,,59 mm tip deflection,Zs= 80 min
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Figure 15: First Fore-and-Aft Mode; 0/90]13 ,59 mm tip deflection,Ys=10 mm

T~q Defedio 58 mm

5 97 Hz

- ya

XS. Z*

'.e%

00 87 S 175 0 2625 3500 437 5 ?50 612S 70

Figure 16: First Fore-and-Aft Mode;0/9013,,59 mm tip deflection,Ys=80 mm
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Figure 17: First Torsion Mode;[0/9013,,59 mm tip deflection, 0,= 5 degree

t.P oofiscu -5 SO m

:T

GB0 20de1H e

o Xs. Z

o Xi i

00 87 5 1750 2625 ISO00 4375 5250 C12S 7000
S(Mn'I

Figure 18: First Torsion Mode;[0/9013,,59 mm tip deflection, 09= 20 degree
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rip OAoon ° 210 rm
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Figure 19: First Bending Mode;[O/9013,,210 mm tip deflection,Zs=10 mm
(G-901 80
rp 0D.erjoi 210 mm

660 Hz
Zs * 200 mm OP

za

Ye. ce,6

33 87 5 t750 262 5 1.500 4P75 5250 61225 7w0

Figure 20: First Bending Mode;,'O/90 311210 mm tip deflection,Zs=200 mm
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Figure 21: Second Bending Mode;[0/90] 3,,210 mm tip deflection,Zs=10 mm

IO(V3 8ram
rQ Defasoi 210 mm

28

36 al z
Zs o mm SOW1

ls
'Is. ceg
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simml

Figure 22: Second Bending Miode;[0/9013,,210 mm tip deflection,Zs= 48 mm
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Figure 23: First Fore-and-Aft Mode;[0/90] 3 ,,210 mm tip deflectioa,Ys=10 mm

0,013a 8aa.
To Oeftcow . 210 mm

IF

- ~ 1 U30Hz
- 80 rmim 11

Ys

00 875 1750 2625 3500 4375 50 6125 7a00
S imml

Figure 24: First Fore-and-Aft Mode;[0/9013 ,,210 mm tip deflection,Ys= 80 mm
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Figure 25: First Torsion Mode;[0/903,,210 mm tip deflection, 0,= 5 degree
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Figure 26: First Torsion Mode;O/90)3.,210 mm tip deflection, 0,= 40 degree
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Figure 27: Frequency vs. Amplitude;0/9013,,O mm tip deflection
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Figure 28: Frequency vs. Amplitude;, '90!3,,59 mm tip deflection
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Figure 29: Frequency vs. -krnphtude:.O '90:3,,210 mm tip deflection
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Figure 30 Centershift vs. Amnplitude;'O,/ 9013a,59 mm tip deflection
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Figure 31: Centershift vs. Arnplitude;'0/90' 3,,210 mm tip deflection
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Figure 32: Frequency vs. Amplitude w/o and w/ 2nd harmonics; '0/'9O13,,24 m
and 210 mm tip deflection
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Figure 33: Natural Frequencies of fO/90) 3. Beam a~s a Function of Tip Deflection (from
Ref. 1)
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Figure 34: First Bending Mode;[45/01 ,,o mm tip deflectionZs=O mm

rp Olsdbi
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Figure 35: First Bending Mode;[45/0]o,O mm tip deflection,Zs--200 mm

61



Top Dmaai * 0 mmu

26

8 06 HZ

Zs imm@u

-es

00 87 5 1750 2625 3500 '*37 5 525 0 812 5 7W0
S(mmj

Figiure 36: Second Bending Mode;145/O],,O mm tip deflection,Zs=1Q mm
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Figure 38: First Fore-and-Aft Mode;r45/OJ,,O mm tip deflection,YS=3.1 mm
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Figure 40: First Torsion Mode;[45/0],O mm tip deflection, 0,= 5 degree
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Figure 41: First Torsion Mode; 45/O0.,O mm tip deflection, 9,= 12 degree
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Figure 42: First Bending Mode; [45/0).,70 mm tip deflection,Zs=10 rmm
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Figure 43: First Bending Mode;[45/ 0,,70 mm tip deflection,Zs=200 mm
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Figure 44: Second Bending Mode; J45/O01,70 mm tip deflection,Zs=10 mm
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Figure 45: Second Bending Mode;,45/0 ,,70 mm tip deflection,Zs= 70 rmm
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Figure 46: First Fore-and-Aft Mode;IL45/01,7O mm tip deflection,Ys=1O mm
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Figure 47: First Fore-and-Aft Mode; f45/01,,70 mm tip deflection,Y9=80 mm
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Figure 48: First Torsion Mode;[45/O1 5 ,7O mm tip deflection, 6.= 5 degree
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Figure 49: First Torsion Mode;[45/OJ.,70 mm tip deflection, 8.= 0O degree
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Figure 50: First Bending Mode;'45/01,,203 mm tip deflection,Zs=1O mm
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Figure 51: First Bending Mode; (45/01,,203 mm tip deflection,Zs=200 mm
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Figure 532: Second Bending Mode;'45/00,,203 mm tip deflection,Zs= 20 mm
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Figure 53:. Second Bending Mode; A5 /01 ,1 203 mm tip deflection,Zs:- 45 mm
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Figure 54: First Fore-and-Aft Mode;45/O1a,203 mm tip deffectiozi,Ys=1O mm
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Figure 55: First Fore-and-Aft Mlode;[45/Oj,,203 mm tip deflection,Ys=80 mm
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Figure 56: First Torsion Mode; [45/0],,203 mm tip deflection, O'= 1 degree
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Figure 57: First Torsion Mode;'45/O],,2O3 mm tip deflection, 0,= 5 degree
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Figure 58: Frequency vs. Amplitude;145/O,,O mm tip deflection
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Figure 59: Frequency vs. Amplitude;'45/'0,,'70 mm tip deflection
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Figure 60: Frequency vs. Amplitude;L45/O0,203 mm tip deflection
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Figure 61: Centershift vs. Amplitude: 45, 0,,70 mm tip deflection
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Figure 62: Centershift vs. Amplitude:45/00,203 mm tip defection
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Figure 63: Frequency vs. Amplitude w o and ., 2nd .armonics; 45 MM

and 203 mm tip deflection
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Figure 64: Natural Frequencies of '45/01, Beam s a Function of Tip Deflection (from
Ref. 1)
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